仅就这篇丢番图方程沃什猜想证明的论文而言,玛丽可能比欧叶更加了解论文作者沈奇。
最了解你的人往往不是你的太太,而是你的死敌。
在这篇论文中,沈奇用到了图厄-西格尔关于二项式函数的帕德逼近方法,从而精确求解图厄方程及图厄不等式。
这种超几何方法的有效代数逼近,在沈奇手中运用的无比娴熟,比他年初的时候更精纯。
沈奇玩逼近的手法对于玛丽来说太熟悉了,她在博士毕业论文中引用过沈奇这种手法产生的结论。
他,又变强了……玛丽呼吸变的急促,胸口猛烈起伏,近日睡眠不足导致她气短胸闷。
然而陌生的是,在帕德逼近结束后,沈奇并未引用玛丽的绝活儿--非零代数整数处理,这让玛丽感到悲哀,痛心,甚至有些失落。
今年年初的时候,他明明用过我的绝活儿……玛丽恨恨的扫了沈奇一眼,不甘心。
形势趋于明朗,既然沈奇在图厄-西格尔关于二项式函数的帕德逼近之后,不使用非零代数整数处理,那么他必然会放弃埃维策证法---玛丽的另一手绝活儿。
惴惴不安的,玛丽翻阅沈奇的论文到最后几页,果不其然,这个中国小子!
沈奇大胆使用gap准则结合约化方法,巧妙的过渡到四次方程ζ=aw^v+b/a1w^v+b1等价于决定序列中的所有平方数。
这几乎是致命一击,让玛丽失魂落魄,非常无力,感觉身体被掏空。
最终沈奇举重若轻、化繁为简的完美证明了,形如ax^4-by^2=1的丢番图方程至多只有两组正整数解。
沃什猜想被一位不满二十一岁的中国年轻人用一种全新的、简洁的方法彻底证明。
玛丽的脸忽白忽红,她比沈奇大七岁,她毕业于德国名校数学系,拥有博士学位。
她曾十分骄傲,但此刻无地自容。
和沈奇的证明方法相比,玛丽的博士毕业论文略low。